MA 222 - Analysis II: Measure and Integration (JAN-APR, 2016)

A. K. Nandakumaran, Department of Mathematics, IISc, Bangalore Problem set 4

- 1. Construct an example to show that the a.e convergence need not imply convergence in measure in an infinite measure space.
- 2. Give an example to show that the convergence in measure need not imply a.e. convergence.
- 3. Let $f_n \to f$ in measure in E and g be a measurable function which is finite a.e. Show that $f_n \to g$ in measure if and only if f = g a.e.
- 4. Let *E* be of finite measure, $f_n \to f$ in measure and *g* be measurable and finite a.e. Prove that $f_n g \to f g$ in measure and further, if $g_n \to g$ in measure, then $f_n g_n \to f g$ in measure.
- 5. Let $\mu(E) < \infty$ and define $\rho(f,g) = \int_E \frac{|f-g|}{1+|f-g|}$. Show that $f_n \to f$ in measure if and only if $\rho(f_n, f) \to 0$.
- 6. Let δ_{x_0} be the Dirac measure at x_0 defined on ([0,1], $\mathcal{P}([0,1])$), $x_0 \in [0,1]$. For $0 \leq t \leq 1$, define $\mu_n^t =: \sum_{k=0}^n {}^n C_k t^k (1-t)^{n-k} \delta_{k/n}$

(a) Prove the following that μ_n^t is a measure satisfying $\mu_n^t([0,1]) = 1$, $\int_0^1 x \ d\mu_n^t = t$ and $\int_0^1 (x-t)^2 \ d\mu_n^t = \frac{t(1-t)}{n}$.

(b) For any $\epsilon > 0$, prove $\mu_n^t(A_\epsilon) = \frac{t(1-t)}{n\epsilon^2}$, where $A_\epsilon = \{x \in [0,1] : |x-t| \ge \epsilon\}$.

(c) Let
$$f \in [0, 1]$$
, Show that $\int_0^1 f \ d\mu_n^t \to f(t)$ uniformly in t .

(d) Deduce Weierstrass approximation theorem: any continuous function in [0, 1] can be approximated uniformly by polynomials.

(e) Let
$$f \in C[0,1]$$
 and $\int_0^1 x^n f(x) \, dx = 0, \ n = 0, 1, 2, \cdots$ then $f \equiv 0$.

- 7. Prove the following: Let $f, g : [a, b] \to \mathbb{R}$ measurable and $c \in \mathbb{R}$:
 - (a) $T_a^b f = T_a^c f + T_c^b f$, $a \le c \le b$ (b) $T_a^b (f+g) \le T_a^b f + T_a^b g$ (c) $T_a^b (cf) = |c| T_a^b f$

8. If $f \in \mathbf{BV}[a, b]$, show that f' exists, integrable and $\int_a^b |f'| \le T_a^b f$.

- 9. Prove $x^{\alpha} \cos \left(\frac{1}{x^{\beta}}\right)$ defined on (0, 1) is of $\mathbf{BV}(0, 1)$ if $\alpha > \beta > 0$. Also prove that $x^{\alpha} \cos \left(\frac{1}{x^{\alpha}}\right)$ is not of $\mathbf{BV}[0, 1]$.
- 10. Let $f \in C^1[a, b]$ such that $|f'(x)| \leq M, \forall x$, then f is absolutely continuous.
- 11. Let f be continuous on [0,1] and absolutely continuous in $[\epsilon, 1]$, $\forall \epsilon > 0$. Is f absolutely continuous on [0,1]? What if f is of $\mathbf{BV}[0, 1]$?
- 12. Construct an absolutely continuous, strictly increasing function g on [0,1] such that g' = 0 on a set of positive measure.